

Risk in a Regulatory Context

Some recent research

Nicola Stacey – 16th June 2016

Views and opinions are my own and do not necessarily reflect HSE policy

- Evaluation of qualitative risk estimation
 - Regulatory context
 - Research design
 - Results
- Foresight
 - What it is and isn't
 - Current projects
 - Introduction to SaRS 2016 Conference

- Many regulations across Europe require risk assessment that is 'suitable and sufficient'.
- Permissioning regimes make a safety case.
- Reduce risk so far as is reasonable practicable –
 i.e. demonstrate ALARP (in the UK)
- Lack of suitable and sufficient risk assessment still cited in prosecutions

- Obtain an estimate of risk level
- Understand hazard & how harm can occur
- Understand what contributes to the risk
- Decide if risk reduction is required
 - Need to be able to evaluate against criteria
- Prioritise action
- Assess impact of risk reduction measures

- Increasing popularity
- Wide diversity of methods available
- Apparent arbitrary use of terms
- Inconsistency & Confusion
- Revision of RA standard

- What are the strengths and limitations of qualitative risk estimation?
 - in general
 - specific method being used
- What makes a good qualitative risk estimation method or tool?
- Different tools: same in > same out?
- Different users: same tool & info > same result?

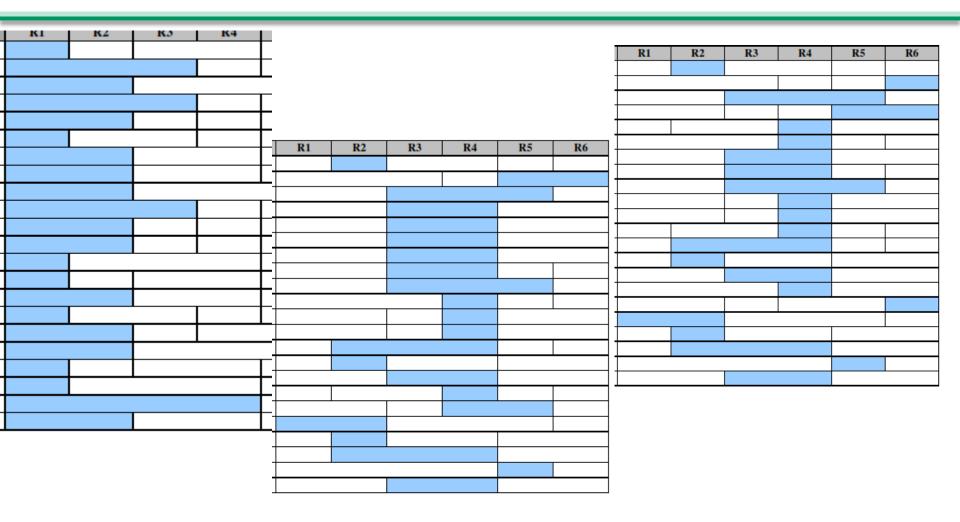
How – Equivalence scales

S1	S2	S3	S4	S5	S6	S7	S8		
Insignificant – No injuries	Minor – First aid treatment	Moderate – Me treatment requi	Major – Extensive injuries		Catastrophic – Death				
- Slight Injury (No or requires only fi	ormally reversible; rst-aid)	Serious Injury (Normally irreversible; or fatality; or requires more than first-aid as defined in OSHA 1904.12)							
- Very low (injury time)	without any lost	Low (Injury with lost- time)	Medium (light disability)	Severe disabili	(severe ity)	Very severe (dealth)			
Scratches, bruises first aid or similar	-	More severe sci bruises, stabbin require medical from profession	It will t difficul	sible injury. be slightly lt to 1e work	Irreversible injury in a way that it will be very difficult to continue work after healing, if possible at all.				
Light injury (norn e.g. abrasion, lase injuries requiring	erations, bruises,	Severe injury (normally irreversible, inc. Death) e.g. broken limb, amputation, severe cuts requiring stitches							

- Vague, imprecise, inconsistent and confusing definitions
- Overlap and gaps between choices
- Same labels but not equiv.
 - different definitions
 - other available choices
 - different order
- Same in did not give same out

Sample hazard scenarios

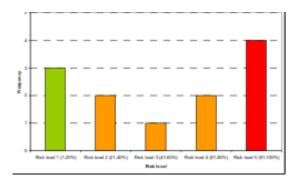
HSL: HSE's Health and Safety Laboratory

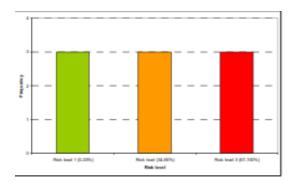


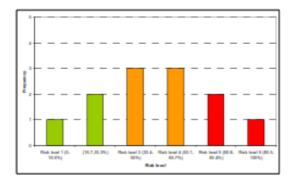
Variability in inputs

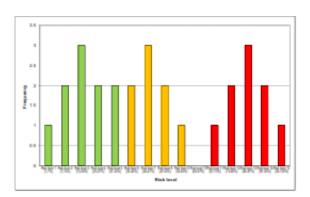
	S1	S2	S3	S4	S5	S6	S7	S8	_								
•																	_
										Phl	Ph2	Ph3	Ph4	Ph5	Phó	Ph7	
																	_
															1		_
																	_
						I											
																	_
																	_
																	_
HSL: H						ļ,								© Crown (Copyright, H	ISL 2016	

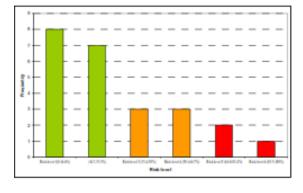
Variability in outputs

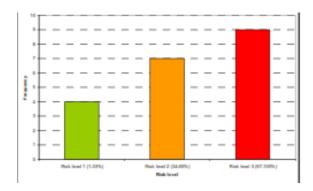

HSL: HSE's Health and Safety Laboratory

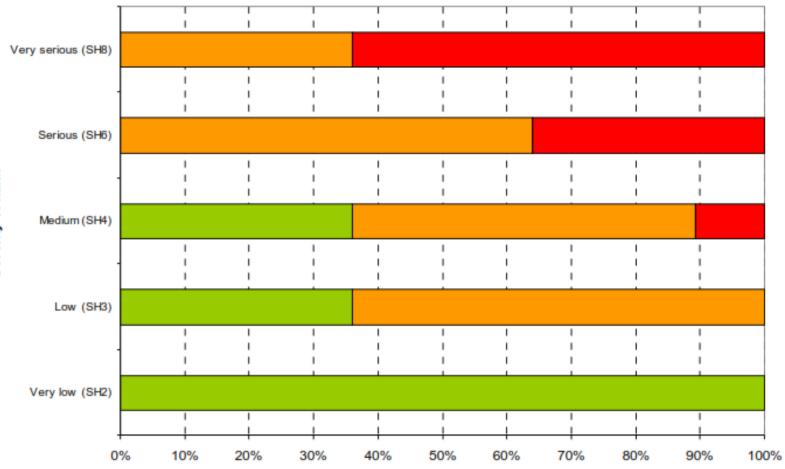



- Different tools: same in > same out?
 - Equivalent inputs ≠ equivalent outputs
 - Example scenarios ≠ equivalent outputs
 - Some tools tended to estimate risks higher on average and others lower.

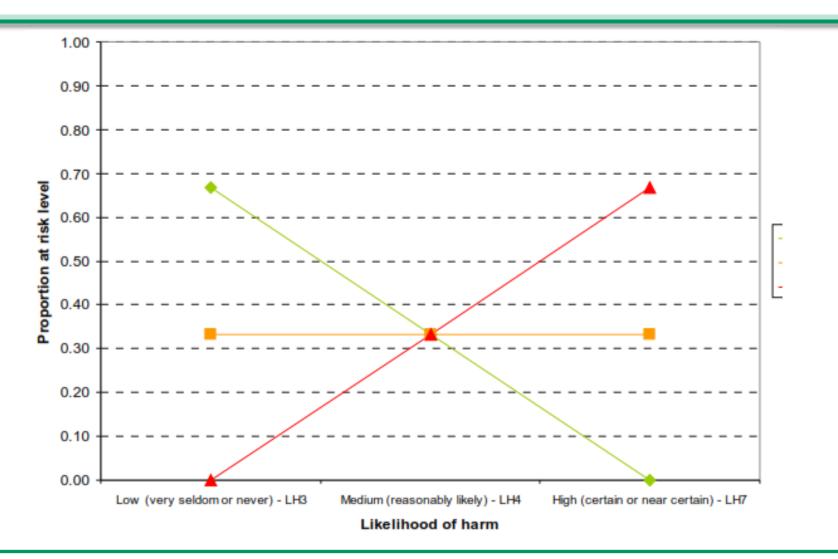



Profiles

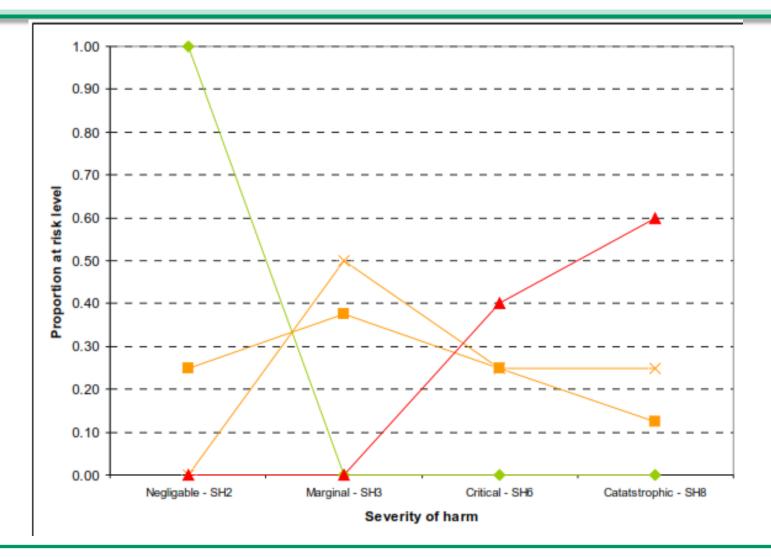




HSL: HSE's Health and Safety Laboratory


Profiles - sensitivity

HSL: HSE's Health and Safety Laboratory

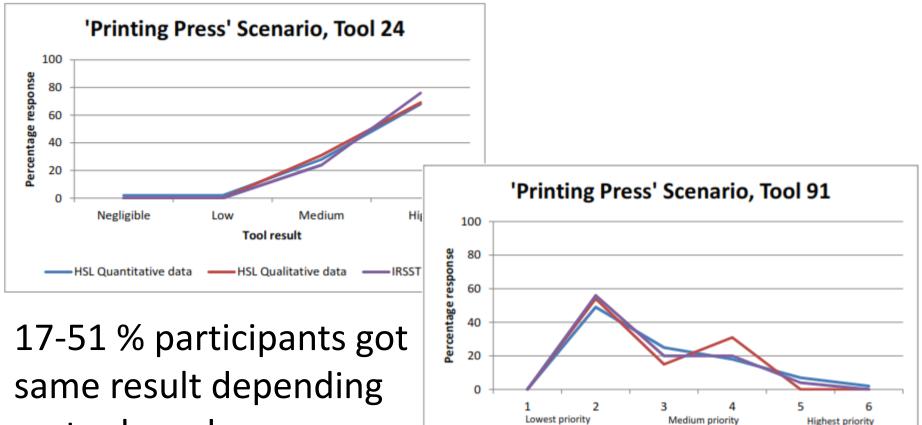


Simple behaviour

Complex (or confusing?)

HSL: HSE's Health and Safety Laboratory

- Different tools: same in > same out?
 - Equivalent inputs ≠ equivalent outputs
 - Example scenarios ≠ equivalent outputs
 - Some tools tended to estimate risks higher on average and others lower.
 - Different users: same tool & info > same result?



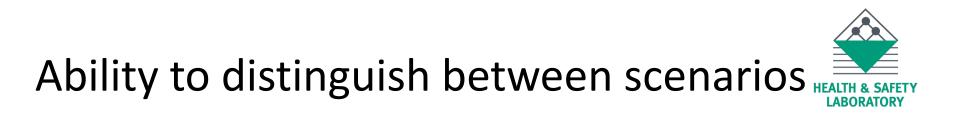
What we did

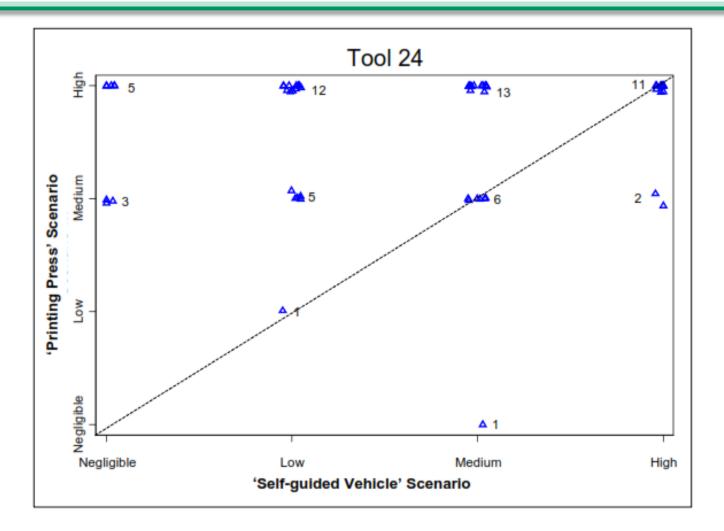
- Researcher led exercises (three tools, one scenario)
 - One to one
 - Group
- Online exercises (two tools, two scenarios)
- Canadian partners, six tools, five Scenarios
 - Researcher led, one to one (all day)

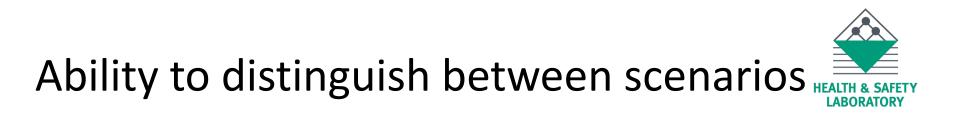
Different tools > different results

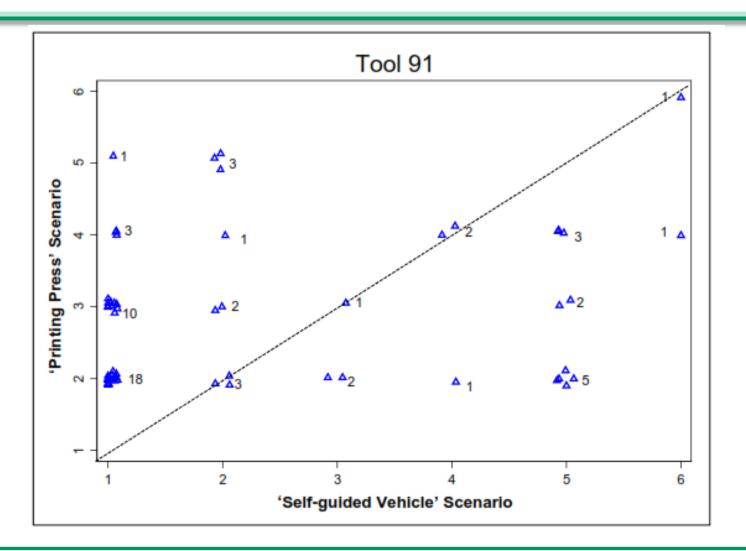
on tool used.

HSL: HSE's Health and Safety Laboratory

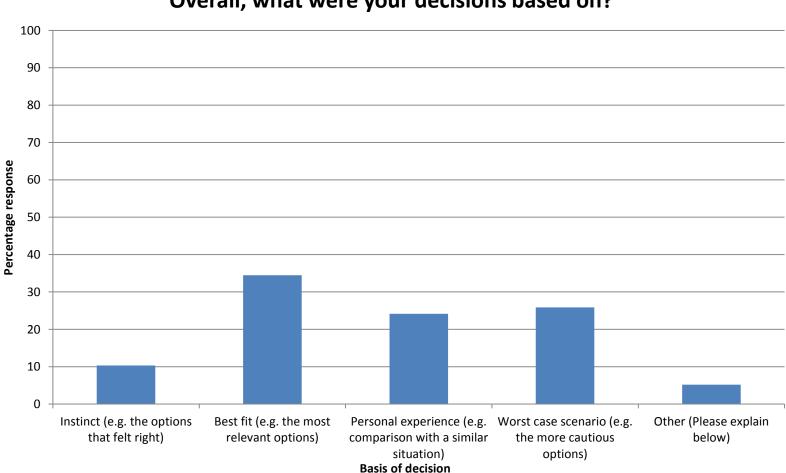

© Crown Copyright, HSL 2016


IRSST data


Risk level


HSL Quantitative data

HSL Qualitative data



Strategies used

Overall, what were your decisions based on?

HSL: HSE's Health and Safety Laboratory

- Dissatisfaction with tool result
- Phrasing and terminology used unclear
- Difficulty distinguishing between terms
- Not enough options or gaps
- Too many input elements
- Too complicated or too simple
 - Strategies used affected by labels and descriptors

- Descriptions of labels important
- Tools generally weighted towards consequence
- Variety and variability
- Need to get assumptions out into open (teamwork)
- Multi-disciplinary approach to research was important

Features of a 'good' tool

- Underlying method
- Type of parameters
- Choices for each parameter
- Calculation and expression of result

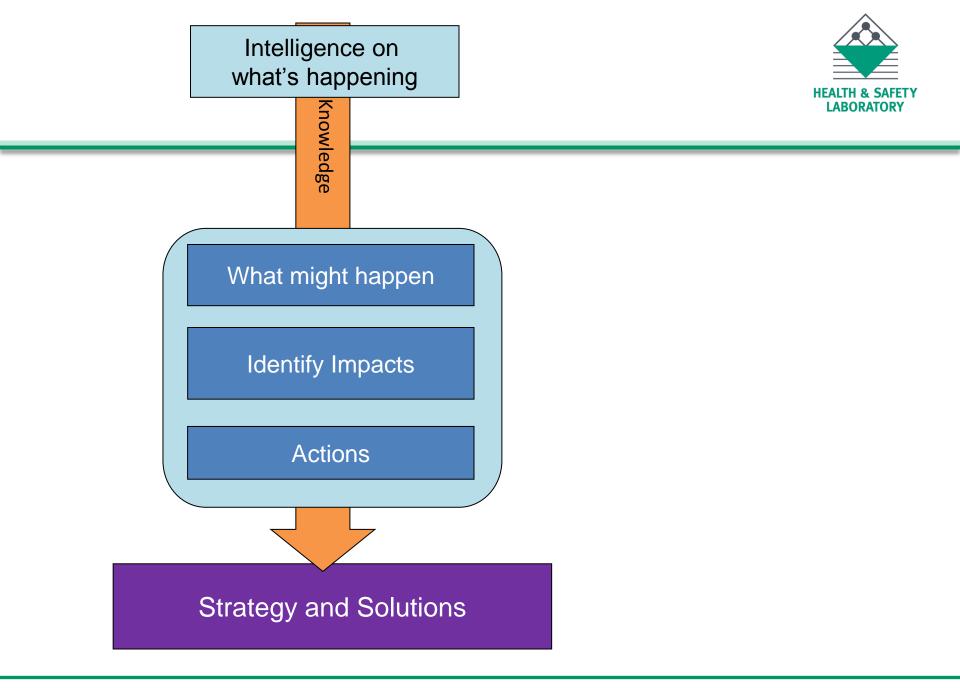
- Follow a 'standard' type of method
 - e.g. matrix, graph, scoring
- One designed for the purpose and industrial sector you wish to use it for (suitable).
 - For machinery as defined in ISO 12100

Choices

- Provide at least 3 and no more than 5
- Provide time reference for probabilities
- Include ill health as well as injury give examples
- Avoid using same word or phrase to define one option (level) as is used as a label for another
- Avoid use of possible as a label
- Avoid use of equivalent words as labels
- Avoid mixing terminology (likely/probable)

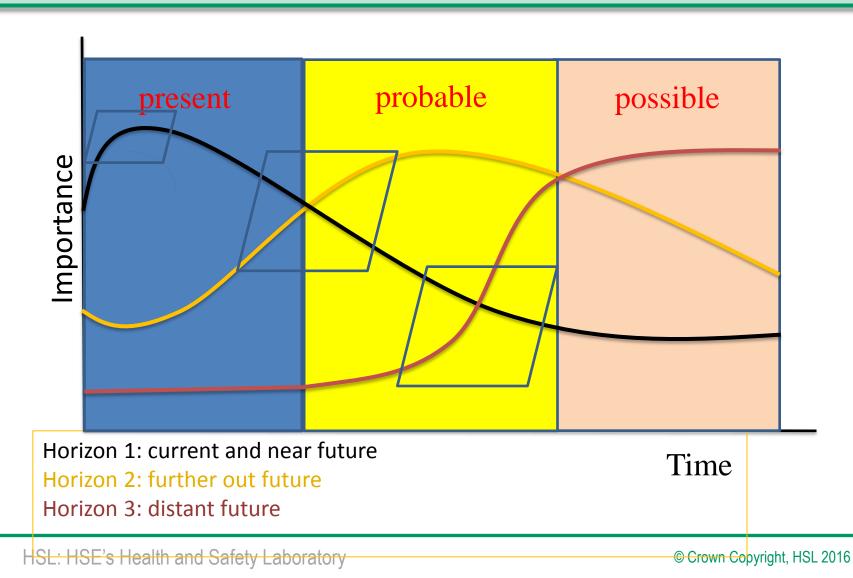
- *"infrequent exposure (typically exposure to the hazard less than once per day)"*

- At least 4 levels of risk.
- Even distribution of risk levels
- Avoid high sensitivity to any input


- Reports are in process of being approved to go on HSE website
- Hoping to be able to make the data available for others to analyse themselves
- Plan to produce series of papers with our partners – will all be open access
- email to express interest
- I will announce all of them in SaRS LinkedIn

- Paques, J-J and Gauthier, F. 2007. Analysis and Classification of the Tools for Assessing the Risks Associated with Industrial Machines. Journal of Occupational Safety and Ergonomics Vol.13 No.2, pp173-187.
- Gauthier, F, Moulet, F, Chinniah Y, Healey N, and Stacey N. 2010. A comparative analysis of risk estimation tools for industrial machines.
 Proceedings of SIAS 2010: 6th International Conference Safety of Industrial Automated Systems

Questions


HSL: HSE's Health and Safety Laboratory Based on a generic foresight model Copyright © 2000 Joseph Voros

- Forecasting
 - When the past is a reasonable guide to the future (ageing population)
- Foresighting
 - If a problem is complex, with high probability of significant change (nature of the workforce)
 - An iterative, 'creative', active 'process'
 - Letting go once incorporated into policy or research plans

Three horizons to scan

- Science and technology
- Workplace (who, how and where)
- Socio-economic factors that affect the labour force and market
- Public attitudes to risk, health, safety and the environment
- National, European and International political agendas

...that could significantly affect health and safety

- Important to understand the current position and how it has developed
- This will influence responses to events in the future
- Existing trends may continue
- Generally pace of change is accelerating, so look back twice as far as looking to the future

Futures techniques

- Scenarios
- Plausibility Matrices
- Wind-tunnelling
- Visioning
- Road-maps
- Back-casting

Need to match technique to objectives

Feedback

Logistics Sector

 "..helped us enormously to focus on the key issues when we refreshed our intervention plan"

Transport Forum

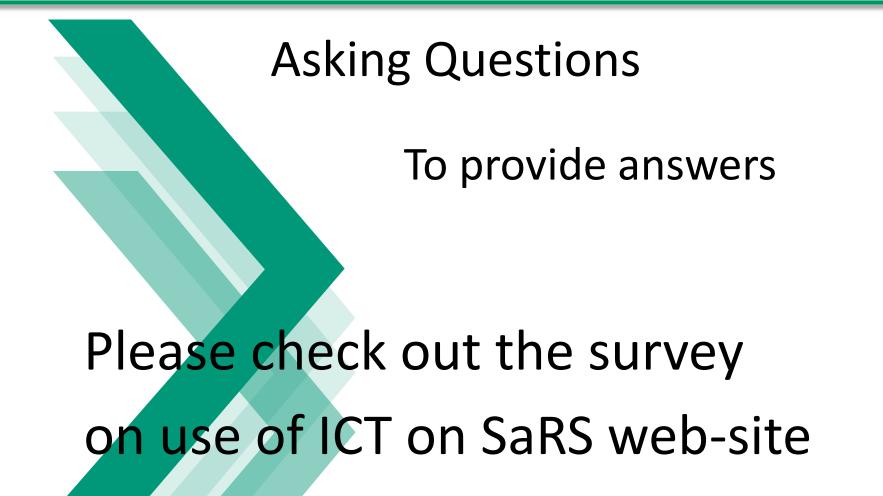
- "I learned a lot" it "Just all worked really well"
- "Futures workshop was an excellent event"
- "Given us food for thought"

HSL: HSE's Health and Safety Laboratory

Waste and Recycling Sector

- Growing sector
- Lots of innovation
- E.g Robot waste pickers

- Threats expected to soon out way the benefits of being online
- Increasing reliance on knowing where to find information rather than knowing information
- Internet of things lights out factories
- Reaching duty-holders


- Increasing work intensity
- ICT enables 24/7 availability
- Increasing sedentary lifestyle
- Remote working
- Ageing workforce

- Learn from the past, learn from one another
- Can't predict future but you can prepare for it
- Futures techniques helps manage uncertainty
- Match technique to objectives, clients needs
- About anticipating future threats and opportunities – gives a strategic edge
- Get stakeholder commitment to take action

HSL: HSE's Health and Safety Laboratory